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Abstract. The dynamical dielectric response function and collective excitations of a two-
dimensional electron gas under a perpendicular magnetic field and in the presence of an
additional weak unidirectional spatially modulated periodicmagneticfield are calculated within
the random-phase approximation. It is found that the dynamical dielectric response function
is not only broadened by the additional magnetic modulation, but it also contains a series of
subsingularities at the band edges. Such broadening of the response function is also found to
modify the magnetoplasmon modes of such a system over their unmodulated counterpart. The
origin of the new subsingularities is attributed to the magnetic modulation-induced broadening
of the energy spectrum. This broadening, being non-uniform, leads to the reintroduction of
particle–hole excitations into the dielectric response function. Such fine structures at the band
edges are similar in appearance to those recently reported for the case of a weak unidirectional
spatially modulated periodicelectric potential though however the former may be up to about
an order of magnitude larger in bandwidth compared to those seen for theelectric case when
equal modulation strengths are considered. It is therefore proposed that these new predicted fine
structures should be more readily observed in far-infrared spectroscopy experiments over their
electric counterpart.

1. Introduction

Recently there has been considerable interest, both theoretically [1–7] and experimentally
[8–10], in a two-dimensional electron gas (2D EG) system in a uniform magnetic field
and under an additional one-dimensional periodic spatialmagneticmodulation. Such work
has followed on from its analogue system, that of a 2D EG system in a uniform magnetic
field and under an additional one-dimensional periodic spatialelectricpotential modulation,
which has to date been extensively studied [11–15].

Most work on the magnetically modulated system has been forweakly modulated
systems (i.e.Bm � B0 where Bm is the amplitude of the magnetic modulation while
B0 is the strength of the uniform magnetic field) where the transport properties in the static
limit have been studied. Little work has been done on the dynamical response properties
of such systems.

In this paper we investigate the dynamical response function and collective excitations of
a 2D EG under a uniform perpendicular magnetic field and in the presence of an additional
one-dimensional periodic spatial magnetic modulation which isweak. Following on from
earlier work for the analogueelectric case [14, 15], where it was found that the response
function is not only broadened by the additionalelectricmodulation but contained a series of
van Hove subsingularities at the band edges, we show that such behaviour is reciprocated
in the magneticcase. Moreover it is found that these van Hove subsingularities at the
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band edges differ from theirelectric counterpart in that they may be considerably more
broadened in bandwidth for equal modulation amplitude strengths (i.e.V0 = h̄ωm, whereV0

is the amplitude of theelectricmodulation while we have writtenωm = eBm/mb in analogy
to the cyclotron frequencyωc, mb being the effective band mass of an electron). This is a
feature which experimentally will be advantageous compared with that of theelectric case
since being larger in bandwidth they should be more readily seen in an optical experiment.
For the collective excitations of the system we confine ourselves to the study of only the
principal magnetoplasmon mode. Here it is found that the principal magnetoplasmon mode,
being dependent for its behaviour on the behaviour of the dynamical dielectric response
function, is modified due to the induced broadening of the response function brought about
by the additionalmagneticmodulation.

In section 2 we give the one-electron Hamiltonian describing our system and use it to
calculate, perturbatively, the energy spectrum. We also present here results for the density
of states (DOS) and zero-temperature chemical potential. In section 3 we present results
for the response function which are compared with theelectric case while in section 4 the
collective excitations are studied. Section 5 is devoted to concluding remarks.

2. The energy spectrum

We consider a 2D EG which we will take to lie in the Cartesian (x, y) plane and which is
also subjected to the following magnetic field:B = (B0+Bm(x))êz. Here the perpendicular
uniform magnetic fieldB0 is applied in thez-direction whileBm(x), being applied also in
thez-direction, is a unidirectional spatially modulated magnetic field which lies in the plane
of the 2D EG and will be taken to be modulated along thex-direction. In this work we will
assume a spatial magnetic modulation of the following form:

Bm(x) = Bm cos(Kx) (1)

where K = 2π/a, a being the periodicity of the magnetic modulation. That is, the
spatial magnetic modulation is periodic and furthermore it will be assumed to beweak,
i.e. Bm � B0. The single-electron Hamiltonian of the system in the effective-mass
approximation is given by

H = 1

2mb

( p − eA)2 (2)

where p is the momentum operator, andA is the magnetic vector potential, whilee
is the electronic charge of an electron. When the Landau gauge is chosen(A =
(0, xB0 +Bm/K sin(Kx), 0)) and exploiting the translational invariance of this Hamiltonian
along they-direction (such that the momentum perpendicular to the modulation,py , is
conserved), by employing an envelope wavefunction of the kind

9n,ky
(x, y) = eikyy8n,ky

(x) (3)

the single-electron Hamiltonian given by equation (2) can be written as

H = H0 + HBm
(4)

such that the envelope wavefunction can be rewritten accordingly as

9n,ky
(x, y) = eikyy [80

n,ky
(x) + 8

Bm

n,ky
(x)]. (5)

This Hamiltonian, i.e. equation (4), is a one-dimensional Hamiltonian which describes the
motion of an electron in thex-direction.
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In equation (4) the first term is the one-dimensional Hamiltonian for a single electron
in a uniform magnetic field and corresponds to the well knownLandausystem. That is,

H0 = − h̄2

2mb

d2

dx2
+ 1

2
mbω

2
c (x − x0)

2 (6)

whereωc = eB0/mb is the cyclotron frequency andx0 = ky`
2 is the centre coordinate with

` = √
h̄/eB0 being the magnetic length andky a quantum number corresponding to the wave

vector along they-direction. The corresponding normalized single-electron eigenfunctions
for H0 are

ψn,ky
(x, y) = eikyy80

n,ky
(x) = 1√

Ly

eikyyφn(x − x0) (7)

where theφn(x − x0) are the well known linear harmonic oscillator eigenfunctions centred
at x0 while Ly is the normalization length in they-direction. The associated eigenvalues for
the Landau system are given byεn,ky

= (n + 1/2)h̄ωc which are degenerate in the quantum
numberky . This energy spectrum gives rise to highly degenerate and singular magnetic
subbands which are referred to as Landau levels (LL).

The second term of equation (4) is given by

HBm
= ωm

K
(−h̄ky + eB0x) sin(Kx) + mbω

2
m

4K2
(1 − cos(2Kx)). (8)

Here the eigenvalues and eigenfunctions corresponding to this Hamiltonian cannot be solved
analytically. Instead, since we are interested only in a weak magnetic modulation, we take
HBm

to be a small perturbation of the Landau system,H0. Taking theψn,ky
(x, y) then as the

unperturbed eigenstates, one calculates from first-order perturbation theory the eigenvalues
for the weakly modulated magnetic system,H , as

En,ky
= εn,ky

+ Vn cos(Kx0) (9)

where only terms linear inBm have been retained. Hereεn,ky
= (n + 1/2)h̄ωc, Vn =

h̄ωm

[
L(1)

n (χ) − 1
2Ln(χ)

]
exp(−χ/2) [16], χ = (K`)2/2 and L(α)

n (x) is an associated
Laguerre polynomial. Note that in our case for a weak magnetic modulation the quantum
numbersn are referred to as themagnetic Landau band indicesand are equivalent to the LL
quantum numbersn for the unmodulated case. This energy spectrum is no longer degenerate
in the quantum numberky sinceEn,ky

is now explicitly dependent onx0 = ky`
2. As a result

the once formerly sharp LL are broadened into bands, so-calledmagneticLandau bands,
which are of a finite width. The bandwidth for the magnetic Landau bands, which are
approximately given by 2|Vn| in a weak spatial magnetic field modulation, are therefore
dependent on the magnetic Landau band indexn [17]. As a result, each different value of
the magnetic Landau band indexn in the energy spectrum leads to magnetic Landau bands
with differing bandwidths. Thus the magnetic modulation-induced broadening of the energy
spectrum is non-uniform, a feature which will be of apparent significance when it comes to
an understanding of the behaviour of the dielectric response function for such a system.

It is well known that in the absence of a magnetic modulation the DOS consists of a
series of delta functions at energies equal to(n+1/2)h̄ωc. The addition of a weak spatially
periodic magnetic modulation however modifies the former delta function like the DOS by
broadening the singularities at the energies(n + 1/2)h̄ωc into bands. In this case the DOS
is given by

D(ε) = A

2π`2

nmax∑
n=0

θ(Vn − |ε − (n + 1/2)h̄ωc|)√
V 2

n − (ε − (n + 1/2)h̄ωc)2
(10)
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Figure 1. Left-hand portion: the energy spectrum due to a weak one-dimensional spatially
periodic magnetic field modulation imposed on a 2D EG in a uniform perpendicular magnetic
field. HereBm = 0.05 T,a = 300 nm andν = 5.5. Right-hand portion: the corresponding DOS
which has been normalized using the unbounded two-dimensional resultD0 = Amb/(πh̄2).

whereA is the area of the sample system,nmax is the number of occupied magnetic Landau
bands (the last magnetic band may be partially occupied) andθ(x) is the Heaviside step
function. Here it can be seen that one-dimensional van Hove singularities of the inverse
square-root type exist at either side of the low- and high-energy edges of the magnetic
broadened Landau bands forming a double-peak structure. The energy spectrumEn,ky

and
DOS D(ε) for an additional unidirectional weakly modulated spatially periodic magnetic
field imposed on a 2D EG under a uniform perpendicular magnetic field are shown in
figure 1.

The chemical potential of the system is now determined through the normalization of
the Fermi–Dirac distributionf (ε), i.e., by setting

N = gs

∫ ∞

0
D(ε)f (ε) dε (11)

wheregs = 2 accounts for the spin degeneracy andN is the total number of electrons.
By substituting equation (10) into (11), we obtain the following closed-form expression
determining the zero-temperature, magnetic-field-dependent, chemical potentialµ for a 2D
EG in a perpendicular magnetic field and under a unidirectional weak spatially periodic
magnetic field modulation:

µ(B0, Bm, 0) = (nmax + 1/2)h̄ωc + Vnmax
sin

[
π

{
ε0
F

h̄ωc

− (nmax + 1/2)

}]
. (12)

Hereε0
F = µ(0, 0, 0) = (h̄2/2mb)(2πN/A) is the zero-temperature and zero-magnetic-field

Fermi energy. Figure 2 shows the magnetic modulation-induced Landau fan diagram, as
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calculated from equation (9), for the first nine magnetic Landau bands (n = 0, 1, . . . , 8). As
an inset in this diagram we show the chemical potential as calculated from equation (12).

3. The response function

We now wish to determine the response properties of our 2D EG in a perpendicular magnetic
field and under a unidirectional weak spatially periodic magnetic field modulation.

We assume that the coupling between the system and the external stimulus (an
electromagnetic radiation field in the case of far-infrared spectroscopic experiments) is weak
so that the response of the system is determined in terms of the properties of the system in
the absence of the external stimulus i.e. alinear response. The response of such a system
is thereby given by a dielectric response functionε(q, ω) dependent on the frequency (ω)
and wave vector (q = (qx, qy)). For our particular model system we have determined the
dielectric response function within the random-phase approximation (RPA). Here we have
used the unperturbed eigenstates for the Landau system, i.e.ψn,ky

(x, y), as the basis set
together with the first-order corrected energy spectrumEn,ky

as was found perturbatively in
section 2. Such an approach gives a first-order corrected dielectric response function for our
model system over that of the Landau system (that of a 2D EG in a perpendicular magnetic
field with no spatial modulation). The RPA should be adequate provided that we confine
our attention to the long-wavelength (small-wave-vector) regime since here the correlation
among the electrons is quite small. It is thought that such an approach should essentially
contain the most salient (new) features for such a system. More accurate calculations made
in the future then should only give minor alterations to those features found within our
simplified approach.

Within the RPA, the dielectric response function for our particular model system is given
as

ε(qx, qy, ω) = 1 + 2πrs

kF

q
h̄ωc

∑
n,n′

Cnn′
∑
x0

fn′,x0+x ′
0
− fn,x0

En,x0 − En′,x0+x ′
0
+ h̄ω

(13)

wherekF is the Fermi wave vector,rs = mbe
2/(h̄2kF ) is the plasma parameter,x ′

0 = qy`
2,

fn,x0 is the Fermi–Dirac distribution function andq =
√

q2
x + q2

y is the magnitude of the

two-dimensional wave vector. It should also be understood thatω meansω + i0+. The
matrix elementCnn′ is given by

Cnn′ = n<!

n>!
Xn>−n<e−X[L(n>−n<)

n<
(X)]2

with X = (q`)2/2, n> = max(n, n′) andn< = min(n, n′).
After separating the above equation into real and imaginary parts using the Dirac identity,

it is convenient to change the centre coordinate summations to integrations over the centre
coordinate via∑

x0

(· · ·) → K

∫ a

0
(· · ·) dx0.

For the imaginary part only thosex0 satisfying energy conservation (enforced by the delta
function) contribute. Thex0-integration is therefore trivial, though tedious algebraically, to
evaluate. For the real part the principal-value integration is exactly solvable via a contour
integral method. By choosing a new set of variables (m = n − n′, n′ = m′) we obtain for
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the respective imaginary and real parts

Im[ε(qx, qy, ω)] = 2π2rs

kF

q
h̄ωc

∞∑
m=1

nmax+1∑
m′=0

Cm+m′,m′(fm+m′,xi
− fm′,xi+x ′

0
)Qmm′

12

− 2π2rs

kF

q
h̄ωc

∞∑
m=1

nmax+1∑
m′=0

Cm+m′,m′(fm+m′,xj +x ′
0
− fm′,xj

)Qmm′
34

+ 2π2rs

kF

q
h̄ωc

nmax+1∑
m′=0

e−X [Lm′(X)]2 (fm′,xk
− fm′,xk+x ′

0
)Q0m′

56 (14)

and

Re[ε(qx, qy, ω)] = 1 − 4π2rs

kF

q
ωc

∞∑
m=1

nmax+1∑
m′=0

Cm+m′,m′(fm+m′,xi
− fm′,xi+x ′

0
)

× θ(1 − 1/|ζ1|)
(mωc + ω)

√
1 − 1/ζ 2

1

− 4π2rs

kF

q
ωc

∞∑
m=1

nmax+1∑
m′=0

Cm+m′,m′(fm+m′,xj +x ′
0
− fm′,xj

)
θ(1 − 1/|ζ3|)

(mωc − ω)

√
1 − 1/ζ 2

3

− 4π2rs

kF

q
ωc

nmax+1∑
m′=0

e−X [Lm′(X)]2 (fm′,xk
− fm′,xk+x ′

0
)
θ(1 − 1/|ζ5|)
ω

√
1 − 1/ζ 2

5

.

(15)

Here

Qmm′
ij = θ(1 − |ζi |)∣∣Vm+m′Wij − Vm′ cos(Kx ′

0)Wij − Vm′ sin(Kx ′
0)Zij

∣∣
with

Wij =
√

(1 − ζ 2
i )/(1 + ζ 2

j ) − (ζiζj )/

√
1 + ζ 2

j

and

Zij = ζi/

√
1 + ζ 2

j + ζj

√
(1 − ζ 2

i )/(1 + ζ 2
j ).

The ζi are given as

ζ1 = mh̄ωc + h̄ω√
V 2

m+m′ − 2Vm+m′Vm′ cos(Kx ′
0) + V 2

m′

= −ζ3(−ω) ζ5 = h̄ω

2Vm′ sin(Kx ′
0/2)

ζ2 = Vm′ sin(Kx ′
0)

Vm′ cos(Kx ′
0) − Vm+m′

= ζ4|m′↔m′+m ζ6 = sin(Kx ′
0)

cos(Kx ′
0) − 1

.

In equations (14) and (15),xα (with α = i, j, k), denotes the simple roots given by the set
of equationsmh̄ωc + Vm+m′ cos(Kxα) − Vm′ cos(Kxα + Kx ′

0) ± h̄ω = 0 where theplus

case corresponds toi and k (with m = 0 for k only) and theminus case corresponds to
j . We have also used Re and Im to denote the real and imaginary parts respectively. The
double summations (m, m′) appearing in equations (14) and (15) run over all states of the
system, which may either be occupied or unoccupied, and are associated physically with the
intermagnetic Landau band transitions. The single summations (m′) appearing in equations
(14) and (15) run within each singly occupied or unoccupied state of the system and are
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Figure 2. The magnetic modulation-induced Landau fan diagram for the first nine magnetic
Landau bands (n = 0, 1, . . . , 8). HereBm = 0.05 T anda = 300 nm. Inset: the corresponding
chemical potential as calculated from equation (12). Here we have takenε0

F = 10 meV.

associated physically with the intramagnetic Landau band transitions. Both of the above
equations are identical algebraically to those obtained by us [14] for the case of a 2D EG in a
perpendicular magnetic field and under an additional unidirectional weak spatially modulated
periodicelectric potential. Equations (14) and (15) thus represent themagneticanalogue to
the electric case [14]. Here however theelectric U-function (Un = V0 exp(−χ/2)Ln(χ)) is
replaced by themagnetic V-function (Vn).

In all of the numerical calculations which are to follow, as an example, we have
employed the following parameters which are realistic values for a typical experimental
system:Bm = 0.05 T, a = 300 nm,q = 0.2kF , andqy = 1 × 106 m−1 at a filling factor
(ν = ε0

F /(h̄ωc) and counts the number of occupied LL or Landau bands at absolute zero) of
5.5. All of the numerical calculations are performed at zero temperature and use a chemical
potentialµ given by equation (12). The remaining parameters used in the calculations are
κ = 13 whereκ is the bulk dielectric constant of the medium,rs = 0.73, andmb = 0.067me

whereme is the free rest mass of an electron.
Figure 3 shows typical behaviour for the imaginary part of the magnetic field-dependent

RPA dielectric function in a unidirectional spatially periodic magnetic modulation which is
weak. For a sufficiently small magnetic modulation amplitudeBm such that the magnetic
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Figure 3. The imaginary part of the RPA dielectric function as a function ofω/ωc for a 2D
EG in a uniform perpendicular magnetic field and in the presence of a weak one-dimensional
spatially periodic magnetic field modulation. HereBm = 0.05 T, a = 300 nm, ν = 5.5 at
T = 0 K. Other parameters used are as given in the text. Inset: the unmodulated (Bm = 0)
case.

Landau bands do not overlap, it can be clearly seen that the imaginary part consists of
a series of individually isolated double-peak structures about the resonance frequency and
each of its harmonics. New subsingularities (fine structure) at either side of the band edges
of each main double-peak structure are also resolved. This is to be contrasted with the
unmodulated case shown as an inset in figure 3. Here the infinities are an artifact of the
RPA, which neglects any intrinsic broadening of the LL. For non-integer filling factors
the number of singularities oneach sideof the band edges is equal toi + 1 wherei is
an integer and counts the resonance frequency (asi = 1) and each of its harmonics (as
i = 2, 3, 4, . . .), with the maximum number given bynmax . For the special case of integer
filling factors this number isi with the maximum number beingnmax − 1. Figure 4 shows
typical behaviour for the real part of the magnetic field-dependent RPA dielectric function
in a unidirectional spatially periodic magnetic modulation which is weak. The real part is
seen to be qualitatively very similar to the unmodulated case (shown as an inset in figure 4)
except about the resonance frequency and each of its harmonics where two new features are
seen to be present. The first of these features is the appearance of new subsingularities (fine
structure) at the same frequencies as found in the case for the imaginary part. Again the
number of such singularities oneach sideof the band edges is the same as the previously
corresponding imaginary case. The second of the features is the existence of astep region,
of finite width, about each of the resonance and harmonic frequencies, which exists between
the subsingularities.

Such fine structures, although not previously reported for a weakly modulated
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Figure 4. The corresponding real part to figure 3. Inset: the unmodulated (Bm = 0) case.

unidirectional spatial magnetic field, are however themagneticanalogue of those recently
reported for the case of a weak unidirectional spatially modulated periodicelectricpotential
[14]. Their origin is exactly analogous to theelectric case. Here the electron–hole
pair excitation for themagneticcase is once more significantly altered by the spatially
periodic magnetic modulation. In the absence of any modulation it is well known that for
infinitely sharp LL the electron–hole pair excitation can only occur at frequencies equal to
the cyclotron frequency and its harmonics. The imaginary part of the dielectric response
function, which describes the pair excitation, thus contains a series of highly singular delta
functions at the frequenciesnωc (n = 1, 2, . . .) forming, in appearance, a so-calledDirac
comb. The magnetic modulation-induced broadening of the energy spectrum now however
leads to the reintroduction of particle–hole excitations into the dielectric response function
and thus allows for pair excitations to occur within a finite frequency bandwidth around
the cyclotron frequency and its harmonics. However, due to the LL broadening being
non-uniform—that is dependent on the magnetic Landau band indexn (a feature explicitly
pointed out in section 2)—each magnetic Landau band thus has a differing bandwidth and
one therefore observes broadened excitations with van Hove subsingularities at the low- and
high-frequency sides of the excitation peaks. This is the origin of these new subsingularities.
Consider the case where the last magnetic Landau band is partially occupied (corresponding
to non-integer filling factors). The allowed transitions (or particle–hole excitations) in the
quantum numbern aboutω ∼ ωc are given bynmax − 2 → nmax − 1 andnmax − 1 → nmax .
Each corresponding transition has two associated van Hove singularities at the band edges.
Importantly however the singularities in the pair excitations for each respective transition
occur over differing frequency bandwidths about the cyclotron frequency due to then-
dependent magnetic modulation-induced level broadening. Thus one observes a total of
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four singularities, two for each transition, aboutω ∼ ωc. The van Hove subsingularities
at the band edges are of the inverse square-root type. The number of singularities thereby
increases by two asω increases from aroundnωc to (n + 1)ωc. The maximum number of
singularities is however constrained to 2nmax due to the limit in initially available occupied
statesnmax .

Figure 5. Top portion: the individual transitions between the magnetic Landau bands about
ω ∼ 2ωc for the general case of a non-integer filling factor. Hereν = 5.5. The small-spaced
broken line corresponds to the transition in the quantum numbern of 3 → 5, the chain line is
for 4 → 6, while the large-spaced broken line is for 5→ 7. The offset is 3000 units in they-
direction while all other parameters used are as in figure 3. Bottom portion: the net contribution
due to all three transitions showing an expected total of six van Hove subsingularities at the
band edges for a non-integer filling factor aboutω ∼ 2ωc.

As an illustrative example on the origin of these new subsingularities we refer the
reader to figure 5. Here we consider the case in which the last magnetic Landau band is
partially occupied. The allowed transitions aboutω ∼ 2ωc are: nmax − 3 → nmax − 1,
nmax − 2 → nmax andnmax − 1 → nmax + 1. Note that for the special case where the last
magnetic Landau band is completely occupied (corresponding to integer filling factors), the
allowed transitions would be:nmax − 2 → nmax andnmax − 1 → nmax + 1 only. Since we
have considered a filling factor ofν = 5.5 then in this casenmax = 6. In this particular case
then one expects three singularities on either side of the band edges giving a total of six
such singularities aboutω ∼ 2ωc. Explicitly then the particular transitions in the quantum
numbern involved are 3→ 5, 4 → 6 and 5→ 7. The individual contributions due to
each of these transitions is shown in the upper portion of the figure with the resultant due
to all three contributions being shown in the corresponding bottom portion. The origin and
number of subsingularities are thus left in clear evidence from such a figure.

Although the structures for themagneticand theelectricmodulated cases in the response
function are seen to be qualitatively very similar, the sizes of their respective bandwidths
can differ considerably. Such bandwidths for the subsingularities in themagneticcase may
be up to about an order of magnitude larger compared to those seen for theelectric case
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when equal modulation strengths are considered. Here by equal modulation strengths we
meanV0 = h̄ωm, so that|h̄e/mbBm(x)| = |Vm(x)| where once more we have assumed a
spatially periodicelectrostaticmodulation potential of the formVm(x) = V0 cos(Kx).

Figure 6. A comparison between theelectric(top curve offset by 30 units in they-direction) and
magnetic(bottom curve) modulated cases for the imaginary part of the RPA dielectric function
aboutω ∼ 4ωc. Here theelectric modulation strength is ten times that of themagneticcase,
i.e. V0 = 10h̄ωm (Bm = 0.05 T, V0 = 0.86 meV) with all other parameters for both modulated
cases remaining identical.

As noted by Peeters and Vasilopoulos [5], when only terms linear inBm are retained,
the amplitude amplification in the bandwidth for themagneticcase, when equal modulation
strengths are considered, is given by a factor ofaky/(2π) over that of the corresponding
electric case. Furthermore, they also pointed out that the respective bandwidth maxima
and minima are out of phase with each other by approximately 90◦. So, on average,
provided one is not near magnetic field valuesB0 such that one is at or near the bandwidth
minima for themagneticcase, suchmagneticbandwidths will always be larger then their
electric counterparts. Accordingly then, band-structure effects, such as the van Hove
subsingularities at the band edges, for themagneticcase will, on average, result in stronger
and more prominent features being visible as compared with theelectric case. Such is the
demonstrated case in figure 6. Here it is shown, for the case ofV0 = 10h̄ωm, that the
size of the bandwidths for the van Hove subsingularities in the response function for the
magneticcase, in this particular example, are larger compared to theirelectric counterparts.
It is therefore proposed that these new predicted fine structures due to a weakmagnetic
modulation should be more readily observed in far-infrared spectroscopy experiments than
their electric counterparts.

4. Collective excitations

We now proceed to calculate the magnetoplasmon (mp) modes for our model system.
These are determined by the condition that a non-zero induced charge densityδn exists
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for a vanishing external potentialVext . In the RPA this condition is equivalent to the
requirement thatε(q, ω) = 0. The angular frequency rootsω = ωmp of Re[ε(qx, qy, ω)] = 0
such that Im[ε(qx, qy, ωmp)] = 0 therefore determine the magnetoplasmon modes of the
system. Using then our analytic RPA result for Re[ε(qx, qy, ω)], i.e. equation (15), we have
calculated the magnetoplasmon modes numerically.

Results here will only be given for the principal magnetoplasmon mode. We show
curves for the magnetoplasmon dispersion versus wave vectorqy , which is parallel to the
modulation direction, such thatqx = 0 (in which caseq = qy), for both an unmodulated and
a weak spatial unidirectionally periodicmagneticfield-modulated 2D EG in a perpendicular
uniform magnetic field. The principal magnetoplasmon branch for both systems is such that
ωc 6 (<) ωmp < 2ωc (6 for unmodulated with< for modulated) due to the presence of the
uniform perpendicular magnetic field.

Figure 7. Typical behaviour for the principal magnetoplasmon mode dispersion versus wave
vectorqy in the case ofqx = 0. Here the solid line is for the weakly magnetically modulated
system,Bm = 0.05 T anda = 300 nm, while the broken line is for the unmodulated case. Here
we have used a filling factor of 5. The inset depicts the small-qy behaviour for each system.

For the unmodulated case the principal magnetoplasmon mode within the RPA is
once more determined by the requirement thatε(q, ω) = 0. This is equivalent to
finding the angular frequency root to the real part of the unmodulated dielectric function
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i.e. Re[εUn(q, ω)] = 0 such that Im[εUn(q, ωmp)] = 0. Here Un denotes the unmodulated
case [18]. It is seen that the principal branch of the magnetoplasmon dispersion oscillates
aperiodically with respect toqy between the frequenciesωc to 2ωc with the minimum in
the oscillation being such thatωmp = ωc. In fact if one assumes the coupling between
the different magnetoplasmons modes is small such that only the lowest terms in them-
summation need be retained, that is them = 1 term only (see equation given in reference
[18]) and considering integer filling factors only, one can write, within this approximation,
explicitly for the magnetoplasmon mode

ωmp = ωc

√
1 + 4πrs

kF

q

X

ν
e−X[L(1)

ν−1(X)]2. (16)

So it can be seen from the above equation thatωmp = ωc occurs when eitherqy = 0 or
L

(1)

ν−1(X) = 0. The roots ofL(1)

ν−1(X) = 0 may either be obtained numerically or by the

asymptotic formula for theλth zeroX
(α,n)
λ ∼ [π(λ−1/4+α/2)]2/[4(n+1/2)], valid for large

n, which givesqλ
y ∼ π(λ + 1/4)/

[
`
√

2n + 1
]
. For the particular parameters that we have

chosen (ν = 5 ⇒ B0 = 1.16 T and thusn = 4) this givesqy/kF ∼ 0.414, 0.745, 1.076, . . . ,
together withqy/kF = 0. Such values give good agreement with those shown in figure 7
(which are:qy/kF = 0, 0.386, 0.717, 1.071, . . .) obtained under no such approximation.

The behaviour for the magnetic spatially modulated case is thus very similar qualitatively
to the unmodulated case in that the principal magnetoplasmon mode oscillates aperiodically
with respect to the wave vectorqy between the frequenciesωc and 2ωc. Here however the
minima in the oscillations are such thatωmp 6= ωc. Such is the case since the modulation
induces a broadening of the once singular behaviour in the response function about the
cyclotron frequency and its harmonics (see section 3 and figures 3 and 4). As a result these
so-calledstep regions, which are of finite width, in the response function correspond to a
region where the imaginary part of the dielectric function is non-zero. Zeros occurring in
the real part of the dielectric function in such a region correspond to modes which will be
heavily damped and are therefore of no physical significance. The only stable principal mode
(damping free) will thus always be situated at frequencies outside thesestep regions—that is,
at frequencies greater than the cyclotron frequency and less than that of twice the cyclotron
frequency. Typical behaviour for the principal magnetoplasmon dispersion versus the wave
vector qy , such thatqx = 0, for a weakly magnetically modulated system is shown in
figure 7. The broken line corresponds to the unmodulated case. The inset depicts the small-
qy behaviour for either system. Actually, within a small-qy approximation (qy � √

2/`),
for the unmodulated case, equation (16), which determines the principal magnetoplasmons,
reduces to the following well known result:ω2

mp = ω2
c +ω2

p whereωp =
√

nee2q/(2mbε0κ)

is the two-dimensional plasma frequency in SI units. Herene is the areal density of electrons
while ε0 is the permittivity of free space. So under this approximation for the magnetically
modulated system, where we have considered integer filling factors only and included only
those terms such thatm = 1 in equation (15) by assuming the coupling between the different
magnetoplasmon modes is small, the principal magnetoplasmon mode will be determined
by the following simple equation:

1 = (h̄ωp)2

2h̄ωc

[
1√

(h̄ω − h̄ωc)2 − �2
− 1√

(h̄ω + h̄ωc)2 − �2

]
(17)

where� = 2Vnmax
sin(Kx ′

0/2).
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5. Summary

In conclusion we have calculated, within the RPA, the dynamical dielectric response function
and collective excitations for a 2D EG in a perpendicular uniform magnetic field and in the
presence of an additional weak unidirectional spatially modulated periodicmagneticfield. It
was shown that the former singular nature of the response function for the unmodulated case
at the cyclotron frequencies and its harmonics is not only broadened but furthermore contains
a series of subsingularities at the band edges. Such features represent themagneticanalogue
to those recently reported for theelectric case. Significantly however, such subsingularities
at the band edges due to the magnetic modulation differ from theirelectric counterpart
since the former may be up to about an order of magnitude larger in bandwidth for equal
modulation strengths (i.e.V0 = h̄ωm) due to an amplification in amplitude of the bandwidths
in the magneticcase. These subsingularities should therefore be more readily observed in
far-infrared spectroscopy experiments than theirelectric counterparts.

For the collective excitations we show only the principal magnetoplasmon dispersion
which is calculated along a direction parallel to the modulation and compare the result
to the unmodulated system. The result shows the principal magnetoplasmon oscillates
aperiodically with respect to the wave vectorqy , between the frequenciesωc to 2ωc, such
that the oscillation minima are now shifted above the cyclotron frequency. The result for
the small-q behaviour is also explicitly given.
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